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Abstract. We examine the step dynamics in a 1 + 1-dimensional model of epitaxial growth based on
the BCF-theory. The model takes analytically into account the diffusion of adatoms, an incorporation
mechanism and an Ehrlich-Schwoebel barrier at step edges. We find that the formation of mounds with
a stable slope is closely related to the presence of an incorporation mechanism. We confirm this finding
using a solid-on-solid model in 2 + 1 dimensions. In the case of an infinite step edge barrier we are able to
calculate the saturation profile analytically. Without incorporation but with inclusion of desorption and
detachment we find a critical flux for instable growth but no slope selection. In particular, we show that
the temperature dependence of the selected slope is solely determined by the Ehrlich-Schwoebel barrier
which opens a new possibility in order to measure this fundamental barrier in experiments.

PACS. 81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology and
orientation

1 Introduction

Molecular beam epitaxy (MBE) has attracted much in-
terest from both, theoretical and experimental physicists.
On the one hand it allows the fabrication of high qual-
ity crystals with arbitrary composition and modulated
structures with atomically controlled thickness [1]. On the
other hand it represents a model of nonequilibrium physics
which still lacks a general theory [2]. In particular, the
appearance and the dynamics of three-dimensional (3D)
structures (pyramids or mounds) in crystal growth are not
well-understood in terms of the underlying microscopic
processes.

A long time ago Burton, Cabrera and Frank introduced
the BCF-theory of crystal growth [3]. Within this theoret-
ical approach the crystal surface is described by steps of
single monolayer height. The evolution of the surface is
calculated by solving the diffusion equation on each ter-
race. Within this framework the growth of spirals and the
step flow has been investigated. Elkinani and Villain inves-
tigated such a model including the nucleation probability
of new islands [4]. They found that the resulting struc-
tures are unstable. Towers appear which keep their lateral
extension and grow in height only. They called this ef-
fect the Zeno-effect. The same observation has been made
with a “minimal model” of MBE where fast diffusion to-
gether with a high Ehrlich-Schwoebel barrier has been im-
plemented [5].
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Even though the Zeno-effect has been observed re-
cently on Pt(111) [6], quite typically a coarsening pro-
cess with appearance of slope selection emerges which has
been reported for such diverse systems as Fe(001) [7,8],
Cu(001) [9,10], GaAs(001) [11,12], and HgTe(001) [13].
In addition, slope selection seems to be the generic case
of solid-on-solid computer simulations [12,14,15].

In terms of continuum equations the selection of a
stable slope has been related to the compensation of up-
hill and downhill currents [16,17]. In these studies an ap-
propriate form for the overall surface current has been
introduced without attempting to relate this current to
particular microscopic processes. An uphill current can
be generated by an Ehrlich-Schwoebel barrier [18,19]. The
barrier hinders adatoms to jump down a step edge. Hence,
more particles attach to the upper step edge which leads
to a growth-instability [20] and 3D-growth.

Another process, which constitutes a downhill current,
has been recognized using molecular dynamics simulations
[21,22]. Such diverse mechanisms as downward funneling,
transient diffusion or a knockout process at step edges
lead to the incorporation of arriving particles at the lower
side of the step edge. In addition, it has been suggested
that such a process is responsible for reentrant layer-by-
layer growth [23]. The interplay of different microscopic
processes leading to downhill or uphill currents has also
been studied by Amar and Family [24,25].

Recently we have proposed a simplified model
of epitaxial growth quite similar to the “minimal
model” of Krug [26,27]. In particular we found that
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Fig. 1. Density of diffusing adatoms on a terrace of size `. The
origin of the x-axis is chosen to be in the middle of the terrace.

an incorporation mechanism is crucial to achieve slope se-
lection. However, one simplifying assumption of the model
is an infinite Ehrlich-Schwoebel barrier.

In this article we will present in more detail the argu-
ment leading to slope selection and we will generalize our
results using a continuous step dynamics model analogous
to [4]. In Section 2 we will introduce our extension of the
BCF theory and will discuss the relation to existing results
(Sects. 2 and 3). Typical mound morphologies and the
growth dynamics are compared in Section 4. Afterwards
we will investigate the emergence of slope selection within
the framework of this model (Sect. 5). We will show that
the selected slope has a temperature-dependence which
is solely determined by the Ehrlich-Schwoebel barrier.
Hence, the determination of selected terrace widths in ex-
periments would give direct insight into microscopic prop-
erties such as the Ehrlich-Schwoebel barrier. We confirm
the predicted importance of the incorporation mechanism
using a kinetic Monte-Carlo simulation of a solid-on-solid
model in Section 6. Another effective downward current
could be due to detachment from steps and subsequent
desorption. We will show in Section 7 that slope selec-
tion cannot be achieved by these two processes alone. In
Section 8 we will calculate the saturation profile in the
limiting case of an infinite Ehrlich-Schwoebel barrier.

2 BCF theory

The model is based on the Burton-Cabrera-Frank model
in 1 + 1 dimensions. Within this framework the crystal
surface is specified by the position and direction (upward
or downward) of steps. However, the results can be applied
to surfaces in 2 + 1 dimensions if more or less straight
and parallel steps are present. In this case the 1 + 1 D
height profile of the BCF theory represents a cross-section
perpendicular to the step edges. Figure 1 shows the crystal
surface from the point of view of the BCF-theory. It is
a coarse grained view – the detailed positions of atoms
are not important. However, the terraces of the height
of one atomic monolayer (ML) can still be distinguished.
The most fundamental assumption is that at each time
t the adatom concentration ρ is a function of the step
positions only. In other words, the diffusion of adatoms
is considerably faster than the step velocity. Thus, the

diffusion equation becomes

∂ρ

∂t
(x, t) = 0 = D∇2ρ(x, t) +

F

a
(1)

where D is the diffusion constant and F/a is the flux den-
sity with a denoting the lattice constant. Hence, 1/F is the
time necessary in order to deposit one monolayer. Up to
now, this equation was solved with special boundary con-
ditions at x = −`/2 and +`/2 in the literature. Clearly,
the boundary conditions are chosen depending on whether
the terrace is a vicinal, a top, or a bottom terrace. In
the following we will discuss the typical case of a vici-
nal terrace. The extension to top and bottom terraces is
straightforward.

To include an incorporation mechanism it is necessary
to extend the theory. We assume that there exists an incor-
poration radius such that all particles arriving close to a
downward step within this radius immediately jump down
the step edge. Moreover, this mechanism is assumed to be
temperature independent since the adsorption energy of
an arriving particle is much higher than typical diffusion
barriers. Hence, one has to split the density of diffusing
particles into two regions. The first region close to the up-
per edge where equation (1) holds, and the second one
given by the incorporation radius close to the downward
step where no particles arrive (F = 0). To describe the
motion of steps the flux of incorporated particles must be
taken into account separately.

In the following we will discuss in detail the situation
` > Rinc as sketched in Figure 1. For smaller terraces only
one region exists and the calculations are much easier.
Since our analytical calculations will show that ` > Rinc

is the generic case we concentrate on this situation.
The general one-dimensional solution of equation (1) is

a parabola characterized by three parameters. In addition
to the two diffusion equations, four boundary conditions
are necessary to determine the adatom concentrations ρ1

and ρ2 (cf. Fig. 1):

ρ1(−`/2) = 0 (2)
ρ1(`/2−Rinc) = ρ2(`/2−Rinc) (3)

ρ′1(`/2−Rinc) = ρ′2(`/2−Rinc) (4)

−Dρ′2(`/2) =
D

`1
ρ2(`/2). (5)

Condition (2) is for the special case of perfectly absorbing
step edges. (3) and (4) are necessary to obtain a smooth
density between regions 1 and 2. The left hand side of (5)
is the particle current at the step edge. On the right hand
side this is reformulated using the number of jump at-
tempts Dρ2(`/2) multiplied by the probability of overcom-
ing the Ehrlich-Schwoebel barrier ES. This probability is
expressed as the inverse of a typical length `1

1
`1

=
1
a

exp
(
− ES

kBT

)
(6)

where a stands for the lattice constant.
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Fig. 2. Arrangement of steps around the bottom terrace of
width ` between two mounds.

The resulting density distribution has the form indi-
cated in Figure 1: a parabola in the upper region and linear
close to the downward step. The detailed expressions of ρ1

and ρ2 are not of much interest since the evolution of the
crystal is determined by the currents at the edges. In the
following we will call u(`) the upward current, i.e.

u(`) = −Dρ′1(−`/2)

= − F

2a (`+ `1)
(
`2 + 2``1 − 2Rinc`1 −Rinc

2
)
. (7)

The downward current due to diffusion (the contribution
of the incorporation mechanism is not included) becomes

d(`) = −Dρ′2(+`/2)

=
F

2a (`+ `1)
(`−Rinc)

2 . (8)

Note, that these results are very similar to the correspond-
ing equations (2.2) and (2.3) of reference [4] where no in-
corporation was considered. Setting Rinc = 0 we regain
their results.

The absence of a dependence on D reflects the ansatz
of a quasi-stationary distribution. All arriving particles are
compensated by the loss of particles at the borders and
hence the currents are proportional to F . The density itself
is proportional to the ratio F/D which again is intuitively
clear.

3 Closure of bottom terraces

In the following, we will reinvestigate the discussion of [4]
concerning the closure of a bottom terrace (cf. Fig. 2). In
the limiting case of an infinite Ehrlich-Schwoebel barrier
the dynamics of the steps become very simple. We denote
by x(t) the position of the right step which of course will
depend on the time t. The origin is chosen to be in the
middle of the bottom terrace. Due to the infinite Ehrlich-
Schwoebel barrier the movement of the right and the left
step are symmetric. The evolution is then described by
ẋ(t) = −Fx(t)−FRinc. The first term corresponds to the
particles which do fall on the bottom terrace and diffuse to
the right. The second term is the contribution of particles
which are incorporated from the step above (which is valid
as long as the bottom terrace is more than a distance Rinc

away from a top terrace). As a result x(t) evolves as

x(t) = (x0 +Rinc) exp (−Ft)−Rinc. (9)

As long as Rinc > 0 there exists a closure time

tc =
1
F

ln
(
x0 +Rinc

Rinc

)
. (10)

Without an incorporation mechanism (Rinc = 0) the bot-
tom terrace will never be closed. This is the reason why
Elkinani and Villain called their model the Zeno-model
to remind the Greek philosopher and his paradox. Even
though the situation is changed if the discrete structure
of the terraces is considered1 they showed that this trend
still holds which gives rise to the formation of deep cracks.
Likewise they found that even finite values of the Ehrlich-
Schwoebel barrier do not change this growth scenario
which has been investigated in more detail in [28]. Once
mounds are built up they remain forever with a fixed lat-
eral size. Our discussion of this limiting case shows that
the inclusion of an incorporation mechanism changes the
growth in a fundamental manner.

4 Growth dynamics

To set up the basic ideas of the behaviour during crystal
growth we show two typical surface profiles according to
the numerical integration of the step system. In Figure 3
we compare the resulting structure of the Zeno model [4]
without an incorporation mechanism and with the inclu-
sion of such a mechanism.

The simulations were carried out on on a system of
485 a width with parameters corresponding to the model
of Section 6 (the temperature used is T = 550 K):

D = 1012 exp
(
−0.9 eV

kBT

)
a2

s
≈ 5664

a2

s

`1 = exp
(

+
0.1 eV
kBT

)
a ≈ 8.2a

Rinc = 1a

F = 1 ML s−1.

As in [4] the Ehrlich-Schwoebel barrier has been sup-
pressed for bottom terraces of one lattice constant width.
Without an additional incorporation mechanism the ap-
pearance of trenches is unavoidable in accordance to [28].
The incorporation mechanism gives rise to a well-defined
slope which does not change with time. Another funda-
mental difference is the coarsening behaviour. Without an
incorporation mechanism the trenches are stable and the
number of mounds remains constant. The additional in-
corporation mechanism leads to a coarsening behaviour.

In lattice models as well as for continuum equations
the coarsening is driven by fluctuations [29,26] and in
1 + 1 dimensions the corresponding exponent is 1/3. This
is in accordance to Ostwald-ripening which has been pre-
dicted from the similarities of the relevant continuum

1 The currents can be translated into probabilities of placing
a particle at the step edge. Hence, a bottom terrace of width
one always has a nonvanishing probability to be filled.
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(a)

(b)

Fig. 3. In (a) we show the typical height profile of the Zeno
model. With inclusion of an incorporation mechanism in (b)
we obtain structures with slope selection and prevent the for-
mation of deep cracks. In both cases we have deposited (from
bottom to top) 20, 50, 100, and 200 ML where the height pro-
files have been shifted by +25, 0, −45, and −140 ML respec-
tively. The regions are subsections of 200 a out of a surface of
size 485 a.

equations [17]. However, since we treat the step evolution
in a deterministic manner we do not obtain a scaling be-
haviour. The only way fluctuations come into play during
the simulation is when new islands are nucleated. As a con-
sequence the evolution of e.g. the width of the height dis-
tribution w is characterized by jumps (data not shown), a
behaviour which has not been observed for kinetic Monte-
Carlo simulations in the literature. A jump in w appears
each time when two mounds merge. These findings are a
direct confirmation of the relevance of the fluctuations for
the coarsening behaviour. However, it should be possible
to extract a scaling law by averaging over sufficiently large
system sizes.

5 Slope selection

The inclusion of an incorporation mechanism leads to
slope selection which is apparent from Figure 3b. Siegert

and Plischke [16] required a cancellation of upward and
downward currents in the continuum equations. Again, in
the case of an infinite Ehrlich-Schwoebel barrier the cal-
culations are straightforward. In this case the downward
current on a vicinal terrace of size ` is solely due to the
incorporation mechanism, i.e. proportional to FRinc. All
the remaining diffusing adatoms will contribute to the up-
ward current and hence the current will be F (` − Rinc).
As a consequence the slope selection will be achieved with
a mean terrace width of size

`∗ = 2Rinc (11)

in accordance to the findings in [26].
It remains to calculate the terrace widths for a finite

Ehrlich-Schwoebel barrier. Since we know the currents
(Eqs. (7, 8) and the incorporation mechanism) we obtain
the overall slope (resp. terrace width) dependent current

J(`) = u(`) + d(`) + FRinc/a

=
F

2a(`+ `1)
(
2Rinc

2 + 4Rinc`1 − 2``1
)
. (12)

Note that a positive J(`) signifies a downward current (to
the right in Fig. 1). The stable slope, where no net upward
or downward current remains, is given by the condition
J(`)|`=`∗ = 0 and yields

`∗ = 2Rinc +
Rinc

2

`1

= 2Rinc +
Rinc

2

a
e−ES/(kBT ). (13)

As can be seen from expression (12) the current is positive
for small values of ` and becomes negative for ` > `∗.
Hence `∗ is stabilized by the current.

The stable slope does not depend on the diffusion con-
stant. However, it should be clear from the derivation,
that in order to achieve slope selection the typical diffusion
length should be much larger than `∗. Otherwise the vici-
nal terraces would not proceed via step flow. Rather new
nucleation events on the terraces would lead to a rugged
surface structure.

6 Solid-on-solid model

In order to verify the predicted importance of the in-
corporation mechanism we use computer simulations of
the solid-on-solid (SOS) model on a simple cubic lat-
tice. All processes on the surface are (Arrhenius-) ac-
tivated processes which are described by one common
prefactor ν0 and an activation energy which is param-
eterized as follows: EB is the barrier for surface dif-
fusion, at step edges an Ehrlich-Schwoebel barrier ES

is added. However, this barrier is not added for a
particle which sits on top of a single particle or a
row [23,30]. Each next neighbour contributesEN to the ac-
tivation energy. Within this framework the diffusion con-
stant becomes D = ν0 exp (−EB/kBT ).



S. Schinzer et al.: Ehrlich-Schwoebel barrier controlled slope selection in epitaxial growth 165

Fig. 4. We compare the morphology of the surfaces without
(left) and with (right) an incorporation mechanism. Note that
the two grey-scales are different. The heights in the left pic-
ture range from 1208 to 1326 whereas the right surface only
spans a height difference of 12 from minimum to maximum.
The contour lines are drawn for the same surface at an earlier
stage where only 300 ML have been deposited. Without in-
corporation the mounds (towers) are nearly unchanged despite
the deposition of 1000 ML.

Here, we concentrate on a particular set of parameters
even though other parameter sets were used as well. We
choose ν0 = 1012 s−1, EB = 0.9 eV, EN = 0.25 eV, and
ES = 0.1 eV. This model was already investigated in [31]
and reproduces some kinetic features of CdTe(001). The
deposition of particles occurs with a rate F . The incor-
poration is simulated as follows: after a deposition site is
chosen the particle is allowed to relax immediately to a
lower neighbouring site if such a site is available. Only the
four nearest neighbour sites are checked, hence Rinc = 1 a.

The two simulations shown in Figure 4 are carried out
on a 300× 300 lattice at 560 K and started on a singular
(flat) surface.

In Figure 4 the resulting surfaces with and without
the inclusion of the incorporation mechanism are shown.
Without an incorporation mechanism no slope selection
occurs. Clearly, without incorporation the configuration
of the towers remains unchanged whereas the inclusion
leads to coarsening. The number of mounds diminishes
with time. Accordingly, the surface width w grows like
w ∝ tβ with an exponent β ≈ 1/3 [32]. Without an in-
corporation mechanism no coarsening can be identified.
The towers grow independently of each other and there-
fore, the surface width grows as in the case of random
deposition like w ∝ t1/2 which is confirmed by the simu-
lated data (not shown). We want to mention that it seems
that at higher temperatures the attachment/detachment
kinetics of atoms at step edges yields a coarsening effect
(data not shown). However, still no slope selection has
been observed.

At first glance our findings contradict previous re-
sults obtained with a very similar model. Šmilauer and
Vvedensky obtained a formation of mounds with slope se-
lection irrespective of the inclusion or exclusion of an in-
corporation mechanism [14]. However, they implemented
the Ehrlich-Schwoebel barrier in a different way. Rather
than to hinder the jump over a step edge they impede the
jump towards a step edge. Their motivation for this im-

plementation was to allow the adatoms to leave a small
line of particles of width one which has been tested as a
cause for reentrant layer-by-layer growth [23,30]. In our
simulations the same goal is achieved by suppressing the
Ehrlich-Schwoebel barrier in such a situation. However, in
their simulations particles arriving directly at a step edge
have a probability of 1/4 to jump down the edge, 1/4 to
jump away from the edge and 1/2 to jump along the step
edge. Effectively this leads to an incorporation radius of
length 1/2.

Other simulations of SOS-models used bcc(001)
[15,24] in order to study the growth of typical metals.
In these simulations the SOS-restriction is implemented
in such a way that an adatom must be supported by the
four underlying atoms. Hence, the downward funneling
process is directly implemented. Again, as a result slope
selection is achieved, which has already been discussed in
great detail in [25].

7 Detachment and desorption

One might assume that other mechanisms could lead to
a zero in the slope dependent current. In the follow-
ing we will carry out an analogous calculation with an
adatom-detachment rate from steps and inclusion of des-
orption [33]. Both processes are likely to generate an ef-
fective downward current which can compensate for the
Ehrlich-Schwoebel effect. Even though it is difficult to
relate a stable slope to the surface diffusion current in
the framework of continuum equations if desorption is
included, one can still calculate attachment/detachment
currents at the step edges in the framework of the BCF
theory. Therefore, the determination of the selected slope
using J(`) is possible despite the missing volume conserva-
tion. To investigate whether the aforementioned processes
are sufficient to obtain slope selection (and to simplify no-
tation) we exclude the incorporation mechanism. Thus,
the distinction of the two regions on a terrace is not nec-
essary.

The desorption of diffusing adatoms is easily incorpo-
rated including a term −ρ(x)/τ in the diffusion
equation (1) [33]. In order to include detachment from
steps we have to replace boundary condition (2) by

−Dρ′(−`/2) = γ − D

a
ρ(−`/2) (14)

where γ stands for the detachment rate from steps. Ac-
cordingly, the boundary condition at the downward step
has to be corrected and reads now

−Dρ′(`/2) =
D

`1
ρ(`/2)− γ a

`1
· (15)

The overall slope dependent current becomes

J(`) =
(∆− 1) (`1 − a)

(
aγ
τ −DF

)
(`1 + a)

√
D
τ (∆+ 1) + a`1

τ (∆− 1) +D(∆− 1)
(16)
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where

∆ = e2`/
√
Dτ

has been introduced. Note that ∆ is always greater than
one.

To discuss the qualitative behaviour it is sufficient to
look at the numerator of J(`) (the denominator is always
positive). The first important result is that no slope se-
lection is possible. Only for ` = 0 the current is zero (of
course, there is no upward and downward current as well).

Even though there is no slope selection, one can dis-
cuss whether growth will proceed via layer-by-layer growth
(J(`) > 0 for all `, i.e. terraces tend to grow larger) or a
growth instability is present (J(`) < 0 for all `, i.e. parti-
cles are preferably incorporated at the upper steps).

In the well-known limit of negligible detachment or
desorption rates [34] (γ → 0 or τ → ∞) the Ehrlich-
Schwoebel effect alone determines the sign of J(`). As ex-
pected, for positive step edge barriers (`1 > a) growth
becomes instable whereas negative values of ES stabilize
layer-by-layer growth.

If we assume a positiveES in the general case we obtain
a critical current

FC =
aγ

Dτ
(17)

where the current changes its sign.
If one expresses the diverse rates as used in the solid-

on-solid simulations and sets a = 1 one obtains

FC = νde−(ED+Ebind)/kBT , (18)

where the desorption rate νde−ED/kBT has been intro-
duced. Ebind represents the typical binding energy of a
detaching adatom. In 2 + 1 dimensions this should be ap-
proximately Ebind ≈ 2EN. Using the model of the previ-
ous section, νd = ν0, and ED = 1.1 eV (parameters which
are a reasonable guess for CdTe(001), [31]) one obtains
a critical flux FC = 0.004 ML/s. However, this crossover
should not be observable in experiments, since at such low
external fluxes the step flow of the preexisting steps will
dominate the surface evolution.

8 Saturation profile with infinite step edge
barrier

In this section we will calculate the saturation profile for
the model with infinite step edge barrier. The discussion
of the closure of the bottom terrace already showed that
in this limit the calculations become very simple. As for
the bottom terrace the dynamics of higher steps become
independent of the above lying terrace. The steps xi(t)

evolve according to

dx1

dt
(t) = −F (x1(t) +Rinc)

dx2

dt
(t) = −F (x2(t)− x1(t))

...
dxi
dt

(t) = −F (xi(t)− xi−1(t))

... (19)

Measuring the time in units of 1/F (i.e. setting F = 1
in the above equations) the time to grow one monolayer
is equal to one. In addition, to simplify notation we will
measure all lengths in units of Rinc.

The solution for the lowest terrace has been given in
equation (9). The solution for all steps is

xn(t) =
n∑
i=1

tn−i

(n− i)! (1 + xi(0))e−t − 1 (20)

as can be easily verified. If we want to calculate the steady
state saturation profile we have to require

xi+1(1) = xi(0). (21)

It should be stressed that this is the only assumption: the
surface morphology is a self-reproducing structure. If the
upper steps xi+1 after deposition of one monolayer would
be greater than xi(0) this would result in a flattening of
the surface. Otherwise the slope would become steeper.
Using the solution for the bottom terrace (9) we obtain
the initial value

x1(0) = e− 1 (22)

when we require that the bottom terrace will be closed at
time t = 1.

For the upper terraces equation (20) yields a recursion
relation

xn(1) + 1 = xn−1(0) + 1 =
n∑
i=1

1 + xi(0)
(n− i)!e (23)

which can be solved as described in the appendix using
the generating function. As a result one obtains the initial
positions of the steps on an infinite symmetric step profile.
Every time the bottom terrace is closed the steps (with
new indices) are located at these positions.

In Table 1 we show the analytical expressions for the
step positions derived from the generating function. In
addition, the numerical values of the terrace widths are
shown. With growing index the terrace widths are rapidly
approaching two. Even though they oscillate around this
value it can be shown that

lim
i→∞

(xi(0)− xi−1(0) ) = 2. (24)
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Table 1. Analytical expressions of the saturation profile step
positions and the numerical values of the terrace widths.

i xi(0) xi(0)− xi−1(0)

1 e− 1 1.71828

2 e2 − e− 1 1.95249

3 e3 − 2e2 +
1

2
e− 1 1.99493

4 e4 − 3e3 + 2e2 − 1

6
e− 1 2.00009

5 e5 − 4e4 +
9

2
e3 − 4

3
e2 +

1

24
e− 1 2.00007

Note that we measure the lengths in units of Rinc. Hence
we predict a slope selection with slope 1/(2Rinc) as derived
from the simple argument of Section 5.

The derivation shows that the selected slope is con-
trolled by the closure of the bottom terrace only. Another
length scale is the nucleation length. It is defined by the
typical length of a top terrace at which nucleation of an
island occurs [35]. This length scale is responsible for the
rounding of the towers in Figure 3b and causes a pertur-
bation of the steady-state saturation profile.

9 Conclusion

We have investigated the effect of an incorporation mech-
anism on the morphology of growing surfaces. The inclu-
sion of an incorporation mechanism in a 1+1-dimensional
BCF-theory as well as in SOS computer simulations in
2 + 1 dimensions is necessary in order to obtain slope se-
lection and a coarsening process. We were able to derive
analytically the temperature dependence of the selected
slope. We found that the Ehrlich-Schwoebel barrier alone
controls the temperature dependence. In the limit of an
infinite step edge barrier we derived the steady state satu-
ration profile. In this case the resulting mound morphology
is controlled by the closure of the bottom terrace.

This work has been supported by the Deutsche Forschungsge-
meinschaft DFG through SFB 410.

Appendix: Generating function

To simplify notation we introduce the shifted step posi-
tions bj = xj(0) + 1. We will try to extract the generating
function

f(z) =
∞∑
j=0

bjz
j (A.1)

for the shifted step positions. Clearly, the bj are only of
physical meaning if j > 0 and b0 can be chosen arbitrarily.

Starting from equation (23)

bn−1 =
n∑
i=1

bi
(n− i)! e

for all n ≥ 2 (A.2)

⇒ e z bn−1 z
n−1 =

n∑
i=1

bi z
n

(n− i)! (A.3)

⇒ e z
∞∑
m=1

bm zm =
∞∑
n=2

n∑
i=1

bi z
n

(n− i)! · (A.4)

Choosing b0 = 0 and using b1 = e we arrive at

e z f(z) =
∞∑
n=0

n∑
i=0

bi z
n

(n− i)! − e z (A.5)

⇒ e z f(z) = f(z)ez − e z. (A.6)

Thus, we finally obtain

f(z) =
z

ez−1 − z · (A.7)

The lowest coefficients

bj =
1
j!
∂jf

∂zj

∣∣∣∣
z=0

(A.8)

derived from the generating function are shown in
Table 1. In addition, the generating function can be used
to formally prove equation (24).
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